<< Chapter < Page | Chapter >> Page > |
A quantity $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with the square of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ If $\text{\hspace{0.17em}}y=8\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is 4.
$\text{\hspace{0.17em}}\frac{9}{2}\text{\hspace{0.17em}}$
Many situations are more complicated than a basic direct variation or inverse variation model. One variable often depends on multiple other variables. When a variable is dependent on the product or quotient of two or more variables, this is called joint variation . For example, the cost of busing students for each school trip varies with the number of students attending and the distance from the school. The variable $\text{\hspace{0.17em}}c,$ cost, varies jointly with the number of students, $\text{\hspace{0.17em}}n,$ and the distance, $\text{\hspace{0.17em}}d.\text{\hspace{0.17em}}$
Joint variation occurs when a variable varies directly or inversely with multiple variables.
For instance, if $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ varies directly with both $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z,\text{\hspace{0.17em}}$ we have $\text{\hspace{0.17em}}x=kyz.\text{\hspace{0.17em}}$ If $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ varies directly with $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ and inversely with $z,$ we have $\text{\hspace{0.17em}}x=\frac{ky}{z}.\text{\hspace{0.17em}}$ Notice that we only use one constant in a joint variation equation.
A quantity $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ varies directly with the square of $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ and inversely with the cube root of $\text{\hspace{0.17em}}z.\text{\hspace{0.17em}}$ If $\text{\hspace{0.17em}}x=6\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}y=2\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=8,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}y=1\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=27.\text{\hspace{0.17em}}$
Begin by writing an equation to show the relationship between the variables.
Substitute $\text{\hspace{0.17em}}x=6,\text{\hspace{0.17em}}$ $y=2,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=8\text{\hspace{0.17em}}$ to find the value of the constant $\text{\hspace{0.17em}}k.\text{\hspace{0.17em}}$
Now we can substitute the value of the constant into the equation for the relationship.
To find $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}y=1\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=27,\text{\hspace{0.17em}}$ we will substitute values for $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ into our equation.
$\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ varies directly with the square of $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ and inversely with $\text{\hspace{0.17em}}z.\text{\hspace{0.17em}}$ If $\text{\hspace{0.17em}}x=40\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}y=4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=2,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}y=10\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=25.$
$\text{\hspace{0.17em}}x=20\text{\hspace{0.17em}}$
Access these online resources for additional instruction and practice with direct and inverse variation.
Visit this website for additional practice questions from Learningpod.
Direct variation | $$y=k{x}^{n},k\text{isanonzeroconstant}.$$ |
Inverse variation | $$y=\frac{k}{{x}^{n}},k\text{isanonzeroconstant}.$$ |
What is true of the appearance of graphs that reflect a direct variation between two variables?
The graph will have the appearance of a power function.
If two variables vary inversely, what will an equation representing their relationship look like?
Is there a limit to the number of variables that can jointly vary? Explain.
No. Multiple variables may jointly vary.
For the following exercises, write an equation describing the relationship of the given variables.
Notification Switch
Would you like to follow the 'Precalculus' conversation and receive update notifications?