<< Chapter < Page Chapter >> Page >

( y 6 ) 2 36 ( x + 1 ) 2 16 = 1

Got questions? Get instant answers now!

( x 2 ) 2 49 ( y + 7 ) 2 49 = 1

( x 2 ) 2 7 2 ( y + 7 ) 2 7 2 = 1 ; vertices: ( 9 , 7 ) , ( 5 , 7 ) ; foci: ( 2 + 7 2 , 7 ) , ( 2 7 2 , 7 ) ; asymptotes: y = x 9 , y = x 5

Got questions? Get instant answers now!

4 x 2 8 x 9 y 2 72 y + 112 = 0

Got questions? Get instant answers now!

9 x 2 54 x + 9 y 2 54 y + 81 = 0

( x + 3 ) 2 3 2 ( y 3 ) 2 3 2 = 1 ; vertices: ( 0 , 3 ) , ( 6 , 3 ) ; foci: ( 3 + 3 2 , 1 ) , ( 3 3 2 , 1 ) ; asymptotes: y = x + 6 , y = x

Got questions? Get instant answers now!

4 x 2 24 x 36 y 2 360 y + 864 = 0

Got questions? Get instant answers now!

4 x 2 + 24 x + 16 y 2 128 y + 156 = 0

( y 4 ) 2 2 2 ( x 3 ) 2 4 2 = 1 ; vertices: ( 3 , 6 ) , ( 3 , 2 ) ; foci: ( 3 , 4 + 2 5 ) , ( 3 , 4 2 5 ) ; asymptotes: y = 1 2 ( x 3 ) + 4 , y = 1 2 ( x 3 ) + 4

Got questions? Get instant answers now!

4 x 2 + 40 x + 25 y 2 100 y + 100 = 0

Got questions? Get instant answers now!

x 2 + 2 x 100 y 2 1000 y + 2401 = 0

( y + 5 ) 2 7 2 ( x + 1 ) 2 70 2 = 1 ; vertices: ( 1 , 2 ) , ( 1 , 12 ) ; foci: ( 1 , 5 + 7 101 ) , ( 1 , 5 7 101 ) ; asymptotes: y = 1 10 ( x + 1 ) 5 , y = 1 10 ( x + 1 ) 5

Got questions? Get instant answers now!

9 x 2 + 72 x + 16 y 2 + 16 y + 4 = 0

Got questions? Get instant answers now!

4 x 2 + 24 x 25 y 2 + 200 y 464 = 0

( x + 3 ) 2 5 2 ( y 4 ) 2 2 2 = 1 ; vertices: ( 2 , 4 ) , ( 8 , 4 ) ; foci: ( 3 + 29 , 4 ) , ( 3 29 , 4 ) ; asymptotes: y = 2 5 ( x + 3 ) + 4 , y = 2 5 ( x + 3 ) + 4

Got questions? Get instant answers now!

For the following exercises, find the equations of the asymptotes for each hyperbola.

( x 3 ) 2 5 2 ( y + 4 ) 2 2 2 = 1

y = 2 5 ( x 3 ) 4 , y = 2 5 ( x 3 ) 4

Got questions? Get instant answers now!

( y 3 ) 2 3 2 ( x + 5 ) 2 6 2 = 1

Got questions? Get instant answers now!

9 x 2 18 x 16 y 2 + 32 y 151 = 0

y = 3 4 ( x 1 ) + 1 , y = 3 4 ( x 1 ) + 1

Got questions? Get instant answers now!

16 y 2 + 96 y 4 x 2 + 16 x + 112 = 0

Got questions? Get instant answers now!

Graphical

For the following exercises, sketch a graph of the hyperbola, labeling vertices and foci.

( y + 5 ) 2 9 ( x 4 ) 2 25 = 1

Got questions? Get instant answers now!

( x 2 ) 2 8 ( y + 3 ) 2 27 = 1

Got questions? Get instant answers now!

( y 3 ) 2 9 ( x 3 ) 2 9 = 1

Got questions? Get instant answers now!

4 x 2 8 x + 16 y 2 32 y 52 = 0

Got questions? Get instant answers now!

x 2 8 x 25 y 2 100 y 109 = 0

Got questions? Get instant answers now!

x 2 + 8 x + 4 y 2 40 y + 88 = 0

Got questions? Get instant answers now!

64 x 2 + 128 x 9 y 2 72 y 656 = 0

Got questions? Get instant answers now!

16 x 2 + 64 x 4 y 2 8 y 4 = 0

Got questions? Get instant answers now!

100 x 2 + 1000 x + y 2 10 y 2575 = 0

Got questions? Get instant answers now!

4 x 2 + 16 x 4 y 2 + 16 y + 16 = 0

Got questions? Get instant answers now!

For the following exercises, given information about the graph of the hyperbola, find its equation.

Vertices at ( 3 , 0 ) and ( −3 , 0 ) and one focus at ( 5 , 0 ) .

x 2 9 y 2 16 = 1

Got questions? Get instant answers now!

Vertices at ( 0 , 6 ) and ( 0 , −6 ) and one focus at ( 0 , −8 ) .

Got questions? Get instant answers now!

Vertices at ( 1 , 1 ) and ( 11 , 1 ) and one focus at ( 12 , 1 ) .

( x 6 ) 2 25 ( y 1 ) 2 11 = 1

Got questions? Get instant answers now!

Center: ( 0 , 0 ) ; vertex: ( 0 , −13 ) ; one focus: ( 0 , 313 ) .

Got questions? Get instant answers now!

Center: ( 4 , 2 ) ; vertex: ( 9 , 2 ) ; one focus: ( 4 + 26 , 2 ) .

( x 4 ) 2 25 ( y 2 ) 2 1 = 1

Got questions? Get instant answers now!

Center: ( 3 , 5 ) ; vertex: ( 3 , 11 ) ; one focus: ( 3 , 5 + 2 10 ) .

Got questions? Get instant answers now!

For the following exercises, given the graph of the hyperbola, find its equation.

y 2 9 ( x + 1 ) 2 9 = 1

Got questions? Get instant answers now!

( x + 3 ) 2 25 ( y + 3 ) 2 25 = 1

Got questions? Get instant answers now!

Extensions

For the following exercises, express the equation for the hyperbola as two functions, with y as a function of x . Express as simply as possible. Use a graphing calculator to sketch the graph of the two functions on the same axes.

y 2 9 x 2 1 = 1

y ( x ) = 3 x 2 + 1 , y ( x ) = 3 x 2 + 1

Got questions? Get instant answers now!

( x 2 ) 2 16 ( y + 3 ) 2 25 = 1

Got questions? Get instant answers now!

4 x 2 16 x + y 2 2 y 19 = 0

y ( x ) = 1 + 2 x 2 + 4 x + 5 , y ( x ) = 1 2 x 2 + 4 x + 5

Got questions? Get instant answers now!

4 x 2 24 x y 2 4 y + 16 = 0

Got questions? Get instant answers now!

Real-world applications

For the following exercises, a hedge is to be constructed in the shape of a hyperbola near a fountain at the center of the yard. Find the equation of the hyperbola and sketch the graph.

The hedge will follow the asymptotes y = x  and  y = x , and its closest distance to the center fountain is 5 yards.

x 2 25 y 2 25 = 1

Got questions? Get instant answers now!

The hedge will follow the asymptotes y = 2 x  and  y = −2 x , and its closest distance to the center fountain is 6 yards.

Got questions? Get instant answers now!

The hedge will follow the asymptotes y = 1 2 x and y = 1 2 x , and its closest distance to the center fountain is 10 yards.

x 2 100 y 2 25 = 1

Got questions? Get instant answers now!

The hedge will follow the asymptotes y = 2 3 x and y = 2 3 x , and its closest distance to the center fountain is 12 yards.

Got questions? Get instant answers now!

The hedge will follow the asymptotes   y = 3 4 x  and  y = 3 4 x , and its closest distance to the center fountain is 20 yards.

x 2 400 y 2 225 = 1

Got questions? Get instant answers now!

For the following exercises, assume an object enters our solar system and we want to graph its path on a coordinate system with the sun at the origin and the x-axis as the axis of symmetry for the object's path. Give the equation of the flight path of each object using the given information.

The object enters along a path approximated by the line y = x 2 and passes within 1 au (astronomical unit) of the sun at its closest approach, so that the sun is one focus of the hyperbola. It then departs the solar system along a path approximated by the line y = x + 2.

Got questions? Get instant answers now!

The object enters along a path approximated by the line y = 2 x 2 and passes within 0.5 au of the sun at its closest approach, so the sun is one focus of the hyperbola. It then departs the solar system along a path approximated by the line y = −2 x + 2.

( x 1 ) 2 0.25 y 2 0.75 = 1

Got questions? Get instant answers now!

The object enters along a path approximated by the line y = 0.5 x + 2 and passes within 1 au of the sun at its closest approach, so the sun is one focus of the hyperbola. It then departs the solar system along a path approximated by the line y = −0.5 x 2.

Got questions? Get instant answers now!

The object enters along a path approximated by the line y = 1 3 x 1 and passes within 1 au of the sun at its closest approach, so the sun is one focus of the hyperbola. It then departs the solar system along a path approximated by the line   y = 1 3 x + 1.

( x 3 ) 2 4 y 2 5 = 1

Got questions? Get instant answers now!

The object It enters along a path approximated by the line y = 3 x 9 and passes within 1 au of the sun at its closest approach, so the sun is one focus of the hyperbola. It then departs the solar system along a path approximated by the line y = −3 x + 9.

Got questions? Get instant answers now!

Questions & Answers

sinx sin2x is linearly dependent
cr Reply
what is a reciprocal
Ajibola Reply
The reciprocal of a number is 1 divided by a number. eg the reciprocal of 10 is 1/10 which is 0.1
Shemmy
 Reciprocal is a pair of numbers that, when multiplied together, equal to 1. Example; the reciprocal of 3 is ⅓, because 3 multiplied by ⅓ is equal to 1
Jeza
each term in a sequence below is five times the previous term what is the eighth term in the sequence
Funmilola Reply
I don't understand how radicals works pls
Kenny Reply
How look for the general solution of a trig function
collins Reply
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
Saurabh Reply
sinx sin2x is linearly dependent
cr
root under 3-root under 2 by 5 y square
Himanshu Reply
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
amani Reply
cosA\1+sinA=secA-tanA
Aasik Reply
Wrong question
Saad
why two x + seven is equal to nineteen.
Kingsley Reply
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
Melanie Reply
simplify each radical by removing as many factors as possible (a) √75
Jason Reply
how is infinity bidder from undefined?
Karl Reply
what is the value of x in 4x-2+3
Vishal Reply
give the complete question
Shanky
4x=3-2 4x=1 x=1+4 x=5 5x
Olaiya
hi can you give another equation I'd like to solve it
Daniel
what is the value of x in 4x-2+3
Olaiya
if 4x-2+3 = 0 then 4x = 2-3 4x = -1 x = -(1÷4) is the answer.
Jacob
4x-2+3 4x=-3+2 4×=-1 4×/4=-1/4
LUTHO
then x=-1/4
LUTHO
4x-2+3 4x=-3+2 4x=-1 4x÷4=-1÷4 x=-1÷4
LUTHO
A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial population count was  1350  bacteria. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest whole number, what is the population size after  3  hours?
David Reply
f(x)= 1350. 2^(t/20); where t is in hours.
Merkeb
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask