# 2.4 Complex numbers

 Page 1 / 8
In this section you will:
• Add and subtract complex numbers.
• Multiply and divide complex numbers.
• Simplify powers of $i$ .

Discovered by Benoit Mandelbrot around 1980, the Mandelbrot Set is one of the most recognizable fractal images. The image is built on the theory of self-similarity and the operation of iteration. Zooming in on a fractal image brings many surprises, particularly in the high level of repetition of detail that appears as magnification increases. The equation that generates this image turns out to be rather simple.

In order to better understand it, we need to become familiar with a new set of numbers. Keep in mind that the study of mathematics continuously builds upon itself. Negative integers, for example, fill a void left by the set of positive integers. The set of rational numbers, in turn, fills a void left by the set of integers. The set of real numbers fills a void left by the set of rational numbers. Not surprisingly, the set of real numbers has voids as well. In this section, we will explore a set of numbers that fills voids in the set of real numbers and find out how to work within it.

## Expressing square roots of negative numbers as multiples of $\text{\hspace{0.17em}}i$

We know how to find the square root of any positive real number. In a similar way, we can find the square root of any negative number. The difference is that the root is not real. If the value in the radicand is negative, the root is said to be an imaginary number . The imaginary number $\text{\hspace{0.17em}}i\text{\hspace{0.17em}}$ is defined as the square root of $\text{\hspace{0.17em}}-1.$

$\sqrt{-1}=i$

${i}^{2}={\left(\sqrt{-1}\right)}^{2}=-1$

We can write the square root of any negative number as a multiple of $\text{\hspace{0.17em}}i.\text{\hspace{0.17em}}$ Consider the square root of $\text{\hspace{0.17em}}-49.$

$\begin{array}{ccc}\hfill \sqrt{-49}& =& \hfill \sqrt{49\cdot \left(-1\right)}\\ & =& \sqrt{49}\sqrt{-1}\hfill \\ & =& 7i\hfill \end{array}$

We use $\text{\hspace{0.17em}}7i\text{\hspace{0.17em}}$ and not $\text{\hspace{0.17em}}-7i\text{\hspace{0.17em}}$ because the principal root of $\text{\hspace{0.17em}}49\text{\hspace{0.17em}}$ is the positive root.

A complex number is the sum of a real number and an imaginary number. A complex number is expressed in standard form when written $\text{\hspace{0.17em}}a+bi\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ is the real part and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ is the imaginary part. For example, $\text{\hspace{0.17em}}5+2i\text{\hspace{0.17em}}$ is a complex number. So, too, is $\text{\hspace{0.17em}}3+4i\sqrt{3}.$

Imaginary numbers differ from real numbers in that a squared imaginary number produces a negative real number. Recall that when a positive real number is squared, the result is a positive real number and when a negative real number is squared, the result is also a positive real number. Complex numbers consist of real and imaginary numbers.

## Imaginary and complex numbers

A complex number    is a number of the form $\text{\hspace{0.17em}}a+bi\text{\hspace{0.17em}}$ where

• $a\text{\hspace{0.17em}}$ is the real part of the complex number.
• $b\text{\hspace{0.17em}}$ is the imaginary part of the complex number.

If $\text{\hspace{0.17em}}b=0,$ then $\text{\hspace{0.17em}}a+bi\text{\hspace{0.17em}}$ is a real number. If $\text{\hspace{0.17em}}a=0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ is not equal to 0, the complex number is called a pure imaginary number. An imaginary number    is an even root of a negative number.

Given an imaginary number, express it in the standard form of a complex number.

1. Write $\text{\hspace{0.17em}}\sqrt{-a}\text{\hspace{0.17em}}$ as $\text{\hspace{0.17em}}\sqrt{a}\sqrt{-1}.$
2. Express $\text{\hspace{0.17em}}\sqrt{-1}\text{\hspace{0.17em}}$ as $\text{\hspace{0.17em}}i.\text{\hspace{0.17em}}$
3. Write $\text{\hspace{0.17em}}\sqrt{a}\cdot i\text{\hspace{0.17em}}$ in simplest form.

## Expressing an imaginary number in standard form

Express $\text{\hspace{0.17em}}\sqrt{-9}\text{\hspace{0.17em}}$ in standard form.

$\begin{array}{ccc}\hfill \sqrt{-9}& =& \sqrt{9}\sqrt{-1}\hfill \\ & =& 3i\hfill \end{array}$

In standard form, this is $\text{\hspace{0.17em}}0+3i.$

Express $\text{\hspace{0.17em}}\sqrt{-24}\text{\hspace{0.17em}}$ in standard form.

$\sqrt{-24}=0+2i\sqrt{6}$

## Plotting a complex number on the complex plane

We cannot plot complex numbers on a number line as we might real numbers. However, we can still represent them graphically. To represent a complex number, we need to address the two components of the number. We use the complex plane    , which is a coordinate system in which the horizontal axis represents the real component and the vertical axis represents the imaginary component. Complex numbers are the points on the plane, expressed as ordered pairs $\text{\hspace{0.17em}}\left(a,b\right),$ where $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ represents the coordinate for the horizontal axis and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ represents the coordinate for the vertical axis.

bsc F. y algebra and trigonometry pepper 2
given that x= 3/5 find sin 3x
4
DB
remove any signs and collect terms of -2(8a-3b-c)
-16a+6b+2c
Will
Joeval
(x2-2x+8)-4(x2-3x+5)
sorry
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
(X2-2X+8)-4(X2-3X+5)=0 ?
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
Y
master
master
Soo sorry (5±Root11* i)/3
master
Mukhtar
explain and give four example of hyperbolic function
What is the correct rational algebraic expression of the given "a fraction whose denominator is 10 more than the numerator y?
y/y+10
Mr
Find nth derivative of eax sin (bx + c).
Find area common to the parabola y2 = 4ax and x2 = 4ay.
Anurag
A rectangular garden is 25ft wide. if its area is 1125ft, what is the length of the garden
to find the length I divide the area by the wide wich means 1125ft/25ft=45
Miranda
thanks
Jhovie
What do you call a relation where each element in the domain is related to only one value in the range by some rules?
A banana.
Yaona
given 4cot thither +3=0and 0°<thither <180° use a sketch to determine the value of the following a)cos thither
what are you up to?
nothing up todat yet
Miranda
hi
jai
hello
jai
Miranda Drice
jai
aap konsi country se ho
jai
which language is that
Miranda
I am living in india
jai
good
Miranda
what is the formula for calculating algebraic
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it
Miranda
state and prove Cayley hamilton therom
hello
Propessor
hi
Miranda
the Cayley hamilton Theorem state if A is a square matrix and if f(x) is its characterics polynomial then f(x)=0 in another ways evey square matrix is a root of its chatacteristics polynomial.
Miranda
hi
jai
hi Miranda
jai
thanks
Propessor
welcome
jai
What is algebra
algebra is a branch of the mathematics to calculate expressions follow.
Miranda
Miranda Drice would you mind teaching me mathematics? I think you are really good at math. I'm not good at it. In fact I hate it. 😅😅😅
Jeffrey
lolll who told you I'm good at it
Miranda
something seems to wispher me to my ear that u are good at it. lol
Jeffrey
lolllll if you say so
Miranda
but seriously, Im really bad at math. And I hate it. But you see, I downloaded this app two months ago hoping to master it.
Jeffrey
which grade are you in though
Miranda
oh woww I understand
Miranda
Jeffrey
Jeffrey
Miranda
how come you finished in college and you don't like math though
Miranda
gotta practice, holmie
Steve
if you never use it you won't be able to appreciate it
Steve
I don't know why. But Im trying to like it.
Jeffrey
yes steve. you're right
Jeffrey
so you better
Miranda
what is the solution of the given equation?
which equation
Miranda
I dont know. lol
Jeffrey
Miranda
Jeffrey