Solving application problems with geometric sequences
In real-world scenarios involving arithmetic sequences, we may need to use an initial term of
${a}_{0}$ instead of
${a}_{1}.\text{\hspace{0.17em}}$ In these problems, we can alter the explicit formula slightly by using the following formula:
$${a}_{n}={a}_{0}{r}^{n}$$
Solving application problems with geometric sequences
In 2013, the number of students in a small school is 284. It is estimated that the student population will increase by 4% each year.
Write a formula for the student population.
Estimate the student population in 2020.
The situation can be modeled by a geometric sequence with an initial term of 284. The student population will be 104% of the prior year, so the common ratio is 1.04.
Let
$P$ be the student population and
$n$ be the number of years after 2013. Using the explicit formula for a geometric sequence we get
$${P}_{n}=284\cdot {1.04}^{n}$$
We can find the number of years since 2013 by subtracting.
$$2020-2013=7$$
We are looking for the population after 7 years. We can substitute 7 for
$n$ to estimate the population in 2020.
A business starts a new website. Initially the number of hits is 293 due to the curiosity factor. The business estimates the number of hits will increase by 2.6% per week.
recursive formula for
$nth$ term of a geometric sequence
${a}_{n}=r{a}_{n-1},n\ge 2$
explicit formula for
$\text{\hspace{0.17em}}nth\text{\hspace{0.17em}}$ term of a geometric sequence
$${a}_{n}={a}_{1}{r}^{n-1}$$
Key concepts
A geometric sequence is a sequence in which the ratio between any two consecutive terms is a constant.
The constant ratio between two consecutive terms is called the common ratio.
The common ratio can be found by dividing any term in the sequence by the previous term. See
[link] .
The terms of a geometric sequence can be found by beginning with the first term and multiplying by the common ratio repeatedly. See
[link] and
[link] .
A recursive formula for a geometric sequence with common ratio
$r$ is given by
$\text{\hspace{0.17em}}{a}_{n}=r{a}_{n\u20131}\text{\hspace{0.17em}}$ for
$n\ge 2$ .
As with any recursive formula, the initial term of the sequence must be given. See
[link] .
An explicit formula for a geometric sequence with common ratio
$r$ is given by
$\text{\hspace{0.17em}}{a}_{n}={a}_{1}{r}^{n\u20131}.$ See
[link] .
In application problems, we sometimes alter the explicit formula slightly to
$\text{\hspace{0.17em}}{a}_{n}={a}_{0}{r}^{n}.\text{\hspace{0.17em}}$ See
[link] .
how we can draw three triangles of distinctly different shapes. All the angles will be cutt off each triangle and placed side by side with vertices touching
The anwser is imaginary
number if you want to know The anwser of the expression
you must arrange The expression and use quadratic formula To find the
answer
master
The anwser is imaginary
number if you want to know The anwser of the expression
you must arrange The expression and use quadratic formula To find the
answer
master
Y
master
X2-2X+8-4X2+12X-20=0
(X2-4X2)+(-2X+12X)+(-20+8)= 0
-3X2+10X-12=0
3X2-10X+12=0
Use quadratic formula To find the answer
answer (5±Root11i)/3
master
Soo sorry (5±Root11* i)/3
master
x2-2x+8-4x2+12x-20
x2-4x2-2x+12x+8-20
-3x2+10x-12
now you can find the answer using quadratic
Mukhtar
2x²-6x+1=0
Ife
explain and give four example of hyperbolic function
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it