# 1.3 Radicals and rational expressions  (Page 5/11)

 Page 5 / 11

## Simplifying rational exponents

Simplify:

1. $5\left(2{x}^{\frac{3}{4}}\right)\left(3{x}^{\frac{1}{5}}\right)$
2. ${\left(\frac{16}{9}\right)}^{-\frac{1}{2}}$

Simplify $\text{\hspace{0.17em}}{\left(8x\right)}^{\frac{1}{3}}\left(14{x}^{\frac{6}{5}}\right).$

$28{x}^{\frac{23}{15}}$

Access these online resources for additional instruction and practice with radicals and rational exponents.

## Key concepts

• The principal square root of a number $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ is the nonnegative number that when multiplied by itself equals $\text{\hspace{0.17em}}a.\text{\hspace{0.17em}}$ See [link] .
• If $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ are nonnegative, the square root of the product $\text{\hspace{0.17em}}ab\text{\hspace{0.17em}}$ is equal to the product of the square roots of $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ See [link] and [link] .
• If $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ are nonnegative, the square root of the quotient $\text{\hspace{0.17em}}\frac{a}{b}\text{\hspace{0.17em}}$ is equal to the quotient of the square roots of $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ See [link] and [link] .
• Radical expressions written in simplest form do not contain a radical in the denominator. To eliminate the square root radical from the denominator, multiply both the numerator and the denominator by the conjugate of the denominator. See [link] and [link] .
• The principal n th root of $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ is the number with the same sign as $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ that when raised to the n th power equals $\text{\hspace{0.17em}}a.\text{\hspace{0.17em}}$ These roots have the same properties as square roots. See [link] .
• The properties of exponents apply to rational exponents. See [link] .

## Verbal

What does it mean when a radical does not have an index? Is the expression equal to the radicand? Explain.

When there is no index, it is assumed to be 2 or the square root. The expression would only be equal to the radicand if the index were 1.

Where would radicals come in the order of operations? Explain why.

Every number will have two square roots. What is the principal square root?

The principal square root is the nonnegative root of the number.

Can a radical with a negative radicand have a real square root? Why or why not?

## Numeric

For the following exercises, simplify each expression.

$\sqrt{256}$

16

$\sqrt{\sqrt{256}}$

$\sqrt{4\left(9+16\right)}$

10

$\sqrt{289}-\sqrt{121}$

$\sqrt{196}$

14

$\sqrt{1}$

$\sqrt{98}$

$7\sqrt{2}$

$\sqrt{\frac{27}{64}}$

$\sqrt{\frac{81}{5}}$

$\frac{9\sqrt{5}}{5}$

$\sqrt{800}$

$\sqrt{169}+\sqrt{144}$

25

$\sqrt{\frac{8}{50}}$

$\frac{18}{\sqrt{162}}$

$\sqrt{2}$

$\sqrt{192}$

$14\sqrt{6}-6\sqrt{24}$

$2\sqrt{6}$

$15\sqrt{5}+7\sqrt{45}$

$\sqrt{150}$

$5\sqrt{6}$

$\sqrt{\frac{96}{100}}$

$\left(\sqrt{42}\right)\left(\sqrt{30}\right)$

$6\sqrt{35}$

$12\sqrt{3}-4\sqrt{75}$

$\sqrt{\frac{4}{225}}$

$\frac{2}{15}$

$\sqrt{\frac{405}{324}}$

$\sqrt{\frac{360}{361}}$

$\frac{6\sqrt{10}}{19}$

$\frac{5}{1+\sqrt{3}}$

$\frac{8}{1-\sqrt{17}}$

$-\frac{1+\sqrt{17}}{2}$

$\sqrt[4]{16}$

$\sqrt[3]{128}+3\sqrt[3]{2}$

$7\sqrt[3]{2}$

$\sqrt[5]{\frac{-32}{243}}$

$\frac{15\sqrt[4]{125}}{\sqrt[4]{5}}$

$15\sqrt{5}$

$3\sqrt[3]{-432}+\sqrt[3]{16}$

## Algebraic

For the following exercises, simplify each expression.

$\sqrt{400{x}^{4}}$

$20{x}^{2}$

$\sqrt{4{y}^{2}}$

$\sqrt{49p}$

$7\sqrt{p}$

${\left(144{p}^{2}{q}^{6}\right)}^{\frac{1}{2}}$

${m}^{\frac{5}{2}}\sqrt{289}$

$18{m}^{2}\sqrt{m}$

$9\sqrt{3{m}^{2}}+\sqrt{27}$

$3\sqrt{a{b}^{2}}-b\sqrt{a}$

$2b\sqrt{a}$

$\frac{4\sqrt{2n}}{\sqrt{16{n}^{4}}}$

$\sqrt{\frac{225{x}^{3}}{49x}}$

$\frac{15x}{7}$

$3\sqrt{44z}+\sqrt{99z}$

$\sqrt{50{y}^{8}}$

$5{y}^{4}\sqrt{2}$

$\sqrt{490b{c}^{2}}$

$\sqrt{\frac{32}{14d}}$

$\frac{4\sqrt{7d}}{7d}$

${q}^{\frac{3}{2}}\sqrt{63p}$

$\frac{\sqrt{8}}{1-\sqrt{3x}}$

$\frac{2\sqrt{2}+2\sqrt{6x}}{1-3x}$

$\sqrt{\frac{20}{121{d}^{4}}}$

${w}^{\frac{3}{2}}\sqrt{32}-{w}^{\frac{3}{2}}\sqrt{50}$

$-w\sqrt{2w}$

$\sqrt{108{x}^{4}}+\sqrt{27{x}^{4}}$

$\frac{\sqrt{12x}}{2+2\sqrt{3}}$

$\frac{3\sqrt{x}-\sqrt{3x}}{2}$

$\sqrt{147{k}^{3}}$

$\sqrt{125{n}^{10}}$

$5{n}^{5}\sqrt{5}$

$\sqrt{\frac{42q}{36{q}^{3}}}$

$\sqrt{\frac{81m}{361{m}^{2}}}$

$\frac{9\sqrt{m}}{19m}$

$\sqrt{72c}-2\sqrt{2c}$

$\sqrt{\frac{144}{324{d}^{2}}}$

$\frac{2}{3d}$

$\sqrt[3]{24{x}^{6}}+\sqrt[3]{81{x}^{6}}$

$\sqrt[4]{\frac{162{x}^{6}}{16{x}^{4}}}$

$\frac{3\sqrt[4]{2{x}^{2}}}{2}$

$\sqrt[3]{64y}$

$\sqrt[3]{128{z}^{3}}-\sqrt[3]{-16{z}^{3}}$

$6z\sqrt[3]{2}$

$\sqrt[5]{1,024{c}^{10}}$

## Real-world applications

A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So the length of the guy wire can be found by evaluating $\text{\hspace{0.17em}}\sqrt{90,000+160,000}.\text{\hspace{0.17em}}$ What is the length of the guy wire?

500 feet

A car accelerates at a rate of where t is the time in seconds after the car moves from rest. Simplify the expression.

## Extensions

For the following exercises, simplify each expression.

$\frac{\sqrt{8}-\sqrt{16}}{4-\sqrt{2}}-{2}^{\frac{1}{2}}$

$\frac{-5\sqrt{2}-6}{7}$

$\frac{{4}^{\frac{3}{2}}-{16}^{\frac{3}{2}}}{{8}^{\frac{1}{3}}}$

$\frac{\sqrt{m{n}^{3}}}{{a}^{2}\sqrt{{c}^{-3}}}\cdot \frac{{a}^{-7}{n}^{-2}}{\sqrt{{m}^{2}{c}^{4}}}$

$\frac{\sqrt{mnc}}{{a}^{9}cmn}$

$\frac{a}{a-\sqrt{c}}$

$\frac{x\sqrt{64y}+4\sqrt{y}}{\sqrt{128y}}$

$\frac{2\sqrt{2}x+\sqrt{2}}{4}$

$\left(\frac{\sqrt{250{x}^{2}}}{\sqrt{100{b}^{3}}}\right)\left(\frac{7\sqrt{b}}{\sqrt{125x}}\right)$

$\sqrt{\frac{\sqrt[3]{64}+\sqrt[4]{256}}{\sqrt{64}+\sqrt{256}}}$

$\frac{\sqrt{3}}{3}$

find the value of 2x=32
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
use the y -intercept and slope to sketch the graph of the equation y=6x
how do we prove the quadratic formular
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Need help solving this problem (2/7)^-2
x+2y-z=7
Sidiki
what is the coefficient of -4×
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
An investment account was opened with an initial deposit of \$9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
12, 17, 22.... 25th term
12, 17, 22.... 25th term
Akash
College algebra is really hard?
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
Carole
I'm 13 and I understand it great
AJ
I am 1 year old but I can do it! 1+1=2 proof very hard for me though.
Atone
Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily.
Vedant
hi vedant can u help me with some assignments
Solomon
find the 15th term of the geometric sequince whose first is 18 and last term of 387
I know this work
salma