<< Chapter < Page Chapter >> Page >
Graph of f(x)=1/x with its vertical asymptote at x=0.

Vertical asymptote

A vertical asymptote    of a graph is a vertical line x = a where the graph tends toward positive or negative infinity as the inputs approach a . We write

As  x a , f ( x ) ,   or as  x a , f ( x ) .

End behavior of f ( x ) = 1 x

As the values of x approach infinity, the function values approach 0. As the values of x approach negative infinity, the function values approach 0. See [link] . Symbolically, using arrow notation

As  x , f ( x ) 0 , and as  x , f ( x ) 0.

Graph of f(x)=1/x which highlights the segments of the turning points to denote their end behavior.

Based on this overall behavior and the graph, we can see that the function approaches 0 but never actually reaches 0; it seems to level off as the inputs become large. This behavior creates a horizontal asymptote , a horizontal line that the graph approaches as the input increases or decreases without bound. In this case, the graph is approaching the horizontal line y = 0. See [link] .

Graph of f(x)=1/x with its vertical asymptote at x=0 and its horizontal asymptote at y=0.

Horizontal asymptote

A horizontal asymptote    of a graph is a horizontal line y = b where the graph approaches the line as the inputs increase or decrease without bound. We write

As  x  or  x ,   f ( x ) b .

Using arrow notation

Use arrow notation to describe the end behavior and local behavior of the function graphed in [link] .

Graph of f(x)=1/(x-2)+4 with its vertical asymptote at x=2 and its horizontal asymptote at y=4.

Notice that the graph is showing a vertical asymptote at x = 2 , which tells us that the function is undefined at x = 2.

As  x 2 , f ( x ) ,  and as  x 2 + ,   f ( x ) .

And as the inputs decrease without bound, the graph appears to be leveling off at output values of 4, indicating a horizontal asymptote at y = 4. As the inputs increase without bound, the graph levels off at 4.

As  x ,   f ( x ) 4  and as  x ,   f ( x ) 4.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use arrow notation to describe the end behavior and local behavior for the reciprocal squared function.

End behavior: as x ± ,   f ( x ) 0 ; Local behavior: as x 0 ,   f ( x ) (there are no x - or y -intercepts)

Got questions? Get instant answers now!

Using transformations to graph a rational function

Sketch a graph of the reciprocal function shifted two units to the left and up three units. Identify the horizontal and vertical asymptotes of the graph, if any.

Shifting the graph left 2 and up 3 would result in the function

f ( x ) = 1 x + 2 + 3

or equivalently, by giving the terms a common denominator,

f ( x ) = 3 x + 7 x + 2

The graph of the shifted function is displayed in [link] .

Graph of f(x)=1/(x+2)+3 with its vertical asymptote at x=-2 and its horizontal asymptote at y=3.

Notice that this function is undefined at x = −2 , and the graph also is showing a vertical asymptote at x = −2.

As  x 2 ,   f ( x ) , and as   x 2 + ,   f ( x ) .

As the inputs increase and decrease without bound, the graph appears to be leveling off at output values of 3, indicating a horizontal asymptote at y = 3.

As  x ± ,   f ( x ) 3.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Sketch the graph, and find the horizontal and vertical asymptotes of the reciprocal squared function that has been shifted right 3 units and down 4 units.

Graph of f(x)=1/(x-3)^2-4 with its vertical asymptote at x=3 and its horizontal asymptote at y=-4.

The function and the asymptotes are shifted 3 units right and 4 units down. As x 3 , f ( x ) , and as x ± , f ( x ) 4.

The function is f ( x ) = 1 ( x 3 ) 2 4.

Got questions? Get instant answers now!

Solving applied problems involving rational functions

In [link] , we shifted a toolkit function in a way that resulted in the function f ( x ) = 3 x + 7 x + 2 . This is an example of a rational function. A rational function is a function that can be written as the quotient of two polynomial functions. Many real-world problems require us to find the ratio of two polynomial functions. Problems involving rates and concentrations often involve rational functions.

Questions & Answers

exercise 1.2 solution b....isnt it lacking
Miiro Reply
I dnt get dis work well
john Reply
what is one-to-one function
Iwori Reply
what is the procedure in solving quadratic equetion at least 6?
Qhadz Reply
Almighty formula or by factorization...or by graphical analysis
Damian
I need to learn this trigonometry from A level.. can anyone help here?
wisdom Reply
yes am hia
Miiro
tanh2x =2tanhx/1+tanh^2x
Gautam Reply
cos(a+b)+cos(a-b)/sin(a+b)-sin(a-b)=cotb ... pls some one should help me with this..thanks in anticipation
favour Reply
f(x)=x/x+2 given g(x)=1+2x/1-x show that gf(x)=1+2x/3
Ken Reply
proof
AUSTINE
sebd me some questions about anything ill solve for yall
Manifoldee Reply
cos(a+b)+cos(a-b)/sin(a+b)-sin(a-b)= cotb
favour
how to solve x²=2x+8 factorization?
Kristof Reply
x=2x+8 x-2x=2x+8-2x x-2x=8 -x=8 -x/-1=8/-1 x=-8 prove: if x=-8 -8=2(-8)+8 -8=-16+8 -8=-8 (PROVEN)
Manifoldee
x=2x+8
Manifoldee
×=2x-8 minus both sides by 2x
Manifoldee
so, x-2x=2x+8-2x
Manifoldee
then cancel out 2x and -2x, cuz 2x-2x is obviously zero
Manifoldee
so it would be like this: x-2x=8
Manifoldee
then we all know that beside the variable is a number (1): (1)x-2x=8
Manifoldee
so we will going to minus that 1-2=-1
Manifoldee
so it would be -x=8
Manifoldee
so next step is to cancel out negative number beside x so we get positive x
Manifoldee
so by doing it you need to divide both side by -1 so it would be like this: (-1x/-1)=(8/-1)
Manifoldee
so -1/-1=1
Manifoldee
so x=-8
Manifoldee
SO THE ANSWER IS X=-8
Manifoldee
so we should prove it
Manifoldee
x=2x+8 x-2x=8 -x=8 x=-8 by mantu from India
mantu
lol i just saw its x²
Manifoldee
x²=2x-8 x²-2x=8 -x²=8 x²=-8 square root(x²)=square root(-8) x=sq. root(-8)
Manifoldee
I mean x²=2x+8 by factorization method
Kristof
I think x=-2 or x=4
Kristof
x= 2x+8 ×=8-2x - 2x + x = 8 - x = 8 both sides divided - 1 -×/-1 = 8/-1 × = - 8 //// from somalia
Mohamed
1KI POWER 1/3 PLEASE SOLUTIONS
Prashant Reply
hii
Amit
how are you
Dorbor
well
Biswajit
can u tell me concepts
Gaurav
Find the possible value of 8.5 using moivre's theorem
Reuben Reply
which of these functions is not uniformly cintinuous on (0, 1)? sinx
Pooja Reply
helo
Akash
hlo
Akash
Hello
Hudheifa
which of these functions is not uniformly continuous on 0,1
Basant Reply
solve this equation by completing the square 3x-4x-7=0
Jamiz Reply
X=7
Muustapha
=7
mantu
x=7
mantu
3x-4x-7=0 -x=7 x=-7
Kr
x=-7
mantu
9x-16x-49=0 -7x=49 -x=7 x=7
mantu
what's the formula
Modress
-x=7
Modress
new member
siame
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask