# 1.4 Polynomials  (Page 2/15)

 Page 2 / 15

## Identifying the degree and leading coefficient of a polynomial

For the following polynomials, identify the degree, the leading term, and the leading coefficient.

1. $3+2{x}^{2}-4{x}^{3}$
2. $5{t}^{5}-2{t}^{3}+7t$
3. $6p-{p}^{3}-2$
1. The highest power of x is 3, so the degree is 3. The leading term is the term containing that degree, $\text{\hspace{0.17em}}-4{x}^{3}.\text{\hspace{0.17em}}$ The leading coefficient is the coefficient of that term, $\text{\hspace{0.17em}}-4.$
2. The highest power of t is $\text{\hspace{0.17em}}5,$ so the degree is $\text{\hspace{0.17em}}5.\text{\hspace{0.17em}}$ The leading term is the term containing that degree, $\text{\hspace{0.17em}}5{t}^{5}.\text{\hspace{0.17em}}$ The leading coefficient is the coefficient of that term, $\text{\hspace{0.17em}}5.$
3. The highest power of p is $\text{\hspace{0.17em}}3,$ so the degree is $\text{\hspace{0.17em}}3.\text{\hspace{0.17em}}$ The leading term is the term containing that degree, $\text{\hspace{0.17em}}-{p}^{3},$ The leading coefficient is the coefficient of that term, $\text{\hspace{0.17em}}-1.$

Identify the degree, leading term, and leading coefficient of the polynomial $\text{\hspace{0.17em}}4{x}^{2}-{x}^{6}+2x-6.$

The degree is 6, the leading term is $\text{\hspace{0.17em}}-{x}^{6},$ and the leading coefficient is $\text{\hspace{0.17em}}-1.$

We can add and subtract polynomials by combining like terms, which are terms that contain the same variables raised to the same exponents. For example, $\text{\hspace{0.17em}}5{x}^{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}-2{x}^{2}\text{\hspace{0.17em}}$ are like terms, and can be added to get $\text{\hspace{0.17em}}3{x}^{2},$ but $\text{\hspace{0.17em}}3x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}3{x}^{2}\text{\hspace{0.17em}}$ are not like terms, and therefore cannot be added.

Given multiple polynomials, add or subtract them to simplify the expressions.

1. Combine like terms.
2. Simplify and write in standard form.

Find the sum.

$\left(12{x}^{2}+9x-21\right)+\left(4{x}^{3}+8{x}^{2}-5x+20\right)$

Find the sum.

$\left(2{x}^{3}+5{x}^{2}-x+1\right)+\left(2{x}^{2}-3x-4\right)$

$2{x}^{3}+7{x}^{2}-4x-3$

## Subtracting polynomials

Find the difference.

$\left(7{x}^{4}-{x}^{2}+6x+1\right)-\left(5{x}^{3}-2{x}^{2}+3x+2\right)$

Find the difference.

$\left(-7{x}^{3}-7{x}^{2}+6x-2\right)-\left(4{x}^{3}-6{x}^{2}-x+7\right)$

$-11{x}^{3}-{x}^{2}+7x-9$

## Multiplying polynomials

Multiplying polynomials is a bit more challenging than adding and subtracting polynomials. We must use the distributive property to multiply each term in the first polynomial by each term in the second polynomial. We then combine like terms. We can also use a shortcut called the FOIL method when multiplying binomials. Certain special products follow patterns that we can memorize and use instead of multiplying the polynomials by hand each time. We will look at a variety of ways to multiply polynomials.

## Multiplying polynomials using the distributive property

To multiply a number by a polynomial, we use the distributive property. The number must be distributed to each term of the polynomial. We can distribute the $\text{\hspace{0.17em}}2\text{\hspace{0.17em}}$ in $\text{\hspace{0.17em}}2\left(x+7\right)\text{\hspace{0.17em}}$ to obtain the equivalent expression $\text{\hspace{0.17em}}2x+14.\text{\hspace{0.17em}}$ When multiplying polynomials, the distributive property allows us to multiply each term of the first polynomial by each term of the second. We then add the products together and combine like terms to simplify.

Given the multiplication of two polynomials, use the distributive property to simplify the expression.

1. Multiply each term of the first polynomial by each term of the second.
2. Combine like terms.
3. Simplify.

## Multiplying polynomials using the distributive property

Find the product.

$\left(2x+1\right)\left(3{x}^{2}-x+4\right)$

what are odd numbers
numbers that leave a remainder when divided by 2
Thorben
1,3,5,7,... 99,...867
Thorben
the third and the seventh terms of a G.P are 81 and 16, find the first and fifth terms.
if a=3, b =4 and c=5 find the six trigonometric value sin
pls how do I factorize x⁴+x³-7x²-x+6=0
in a function the input value is called
how do I test for values on the number line
if a=4 b=4 then a+b=
a+b+2ab
Kin
commulative principle
a+b= 4+4=8
Mimi
If a=4 and b=4 then we add the value of a and b i.e a+b=4+4=8.
Tariq
what are examples of natural number
an equation for the line that goes through the point (-1,12) and has a slope of 2,3
3y=-9x+25
Ishaq
show that the set of natural numberdoes not from agroup with addition or multiplication butit forms aseni group with respect toaaddition as well as multiplication
x^20+x^15+x^10+x^5/x^2+1
evaluate each algebraic expression. 2x+×_2 if ×=5
if the ratio of the root of ax+bx+c =0, show that (m+1)^2 ac =b^2m
By the definition, is such that 0!=1.why?
(1+cosA+IsinA)(1+cosB+isinB)/(cos@+isin@)(cos$+isin$)
hatdog
Mark
jaks
Ryan