# 8.4 Rotation of axes  (Page 4/8)

 Page 4 / 8

Rewrite the $\text{\hspace{0.17em}}13{x}^{2}-6\sqrt{3}xy+7{y}^{2}=16\text{\hspace{0.17em}}$ in the $\text{\hspace{0.17em}}{x}^{\prime }{y}^{\prime }\text{\hspace{0.17em}}$ system without the $\text{\hspace{0.17em}}{x}^{\prime }{y}^{\prime }\text{\hspace{0.17em}}$ term.

$\frac{{{x}^{\prime }}^{2}}{4}+\frac{{{y}^{\prime }}^{2}}{1}=1$

## Graphing an equation that has no x′y′ Terms

Graph the following equation relative to the $\text{\hspace{0.17em}}{x}^{\prime }{y}^{\prime }\text{\hspace{0.17em}}$ system:

${x}^{2}+12xy-4{y}^{2}=30$

First, we find $\text{\hspace{0.17em}}\mathrm{cot}\left(2\theta \right).$

$\begin{array}{l}\mathrm{cot}\left(2\theta \right)=\frac{A-C}{B}\hfill \\ \mathrm{cot}\left(2\theta \right)=\frac{1-\left(-4\right)}{12}\hfill \\ \mathrm{cot}\left(2\theta \right)=\frac{5}{12}\hfill \end{array}$

Because $\text{\hspace{0.17em}}\mathrm{cot}\left(2\theta \right)=\frac{5}{12},$ we can draw a reference triangle as in [link] .

$\mathrm{cot}\left(2\theta \right)=\frac{5}{12}=\frac{\text{adjacent}}{\text{opposite}}$

Thus, the hypotenuse is

$\begin{array}{r}\hfill {5}^{2}+{12}^{2}={h}^{2}\\ \hfill 25+144={h}^{2}\\ \hfill 169={h}^{2}\\ \hfill h=13\end{array}$

Next, we find and We will use half-angle identities.

Now we find $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{.\hspace{0.17em}}$

and

Now we substitute $\text{\hspace{0.17em}}x=\frac{3{x}^{\prime }-2{y}^{\prime }}{\sqrt{13}}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y=\frac{2{x}^{\prime }+3{y}^{\prime }}{\sqrt{13}}\text{\hspace{0.17em}}$ into $\text{\hspace{0.17em}}{x}^{2}+12xy-4{y}^{2}=30.$

[link] shows the graph of the hyperbola

## Identifying conics without rotating axes

Now we have come full circle. How do we identify the type of conic described by an equation? What happens when the axes are rotated? Recall, the general form of a conic is

$A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0$

If we apply the rotation formulas to this equation we get the form

${A}^{\prime }{{x}^{\prime }}^{2}+{B}^{\prime }{x}^{\prime }{y}^{\prime }+{C}^{\prime }{{y}^{\prime }}^{2}+{D}^{\prime }{x}^{\prime }+{E}^{\prime }{y}^{\prime }+{F}^{\prime }=0$

It may be shown that $\text{\hspace{0.17em}}{B}^{2}-4AC={{B}^{\prime }}^{2}-4{A}^{\prime }{C}^{\prime }.\text{\hspace{0.17em}}$ The expression does not vary after rotation, so we call the expression invariant . The discriminant, $\text{\hspace{0.17em}}{B}^{2}-4AC,$ is invariant and remains unchanged after rotation. Because the discriminant remains unchanged, observing the discriminant enables us to identify the conic section.

## Using the discriminant to identify a conic

If the equation $\text{\hspace{0.17em}}A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0\text{\hspace{0.17em}}$ is transformed by rotating axes into the equation $\text{\hspace{0.17em}}{A}^{\prime }{{x}^{\prime }}^{2}+{B}^{\prime }{x}^{\prime }{y}^{\prime }+{C}^{\prime }{{y}^{\prime }}^{2}+{D}^{\prime }{x}^{\prime }+{E}^{\prime }{y}^{\prime }+{F}^{\prime }=0,$ then $\text{\hspace{0.17em}}{B}^{2}-4AC={{B}^{\prime }}^{2}-4{A}^{\prime }{C}^{\prime }.$

The equation $\text{\hspace{0.17em}}A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0\text{\hspace{0.17em}}$ is an ellipse, a parabola, or a hyperbola, or a degenerate case of one of these.

If the discriminant, $\text{\hspace{0.17em}}{B}^{2}-4AC,$ is

• $<0,$ the conic section is an ellipse
• $=0,$ the conic section is a parabola
• $>0,$ the conic section is a hyperbola

## Identifying the conic without rotating axes

Identify the conic for each of the following without rotating axes.

1. $5{x}^{2}+2\sqrt{3}xy+2{y}^{2}-5=0$
2. $5{x}^{2}+2\sqrt{3}xy+12{y}^{2}-5=0$
1. Let’s begin by determining $\text{\hspace{0.17em}}A,B,$ and $\text{\hspace{0.17em}}C.$
$\underset{A}{\underbrace{5}}{x}^{2}+\underset{B}{\underbrace{2\sqrt{3}}}xy+\underset{C}{\underbrace{2}}{y}^{2}-5=0$

Now, we find the discriminant.

Therefore, $\text{\hspace{0.17em}}5{x}^{2}+2\sqrt{3}xy+2{y}^{2}-5=0\text{\hspace{0.17em}}$ represents an ellipse.

2. Again, let’s begin by determining $\text{\hspace{0.17em}}A,B,$ and $\text{\hspace{0.17em}}C.$
$\underset{A}{\underbrace{5}}{x}^{2}+\underset{B}{\underbrace{2\sqrt{3}}}xy+\underset{C}{\underbrace{12}}{y}^{2}-5=0$

Now, we find the discriminant.

Therefore, $\text{\hspace{0.17em}}5{x}^{2}+2\sqrt{3}xy+12{y}^{2}-5=0\text{\hspace{0.17em}}$ represents an ellipse.

#### Questions & Answers

how do I set up the problem?
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
please can go further on polynomials quadratic
Abdullahi
hi mam
Mark
I need quadratic equation link to Alpa Beta
find the value of 2x=32
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
yes i wantt to review
Mark
use the y -intercept and slope to sketch the graph of the equation y=6x
how do we prove the quadratic formular
Darius
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
can you teacch how to solve that🙏
Mark
Solve for the first variable in one of the equations, then substitute the result into the other equation. Point For: (6111,4111,−411)(6111,4111,-411) Equation Form: x=6111,y=4111,z=−411x=6111,y=4111,z=-411
Brenna
(61/11,41/11,−4/11)
Brenna
x=61/11 y=41/11 z=−4/11 x=61/11 y=41/11 z=-4/11
Brenna
Need help solving this problem (2/7)^-2
x+2y-z=7
Sidiki
what is the coefficient of -4×
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
An investment account was opened with an initial deposit of \$9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation