# 8.4 Rotation of axes  (Page 2/8)

 Page 2 / 8

## Identifying a conic from its general form

Identify the graph of each of the following nondegenerate conic sections.

1. $4{x}^{2}-9{y}^{2}+36x+36y-125=0$
2. $9{y}^{2}+16x+36y-10=0$
3. $3{x}^{2}+3{y}^{2}-2x-6y-4=0$
4. $-25{x}^{2}-4{y}^{2}+100x+16y+20=0$
1. Rewriting the general form, we have

$A=4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}C=-9,$ so we observe that $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ have opposite signs. The graph of this equation is a hyperbola.

2. Rewriting the general form, we have

$A=0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}C=9.\text{\hspace{0.17em}}$ We can determine that the equation is a parabola, since $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ is zero.

3. Rewriting the general form, we have

$A=3\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}C=3.\text{\hspace{0.17em}}$ Because $\text{\hspace{0.17em}}A=C,$ the graph of this equation is a circle.

4. Rewriting the general form, we have

$A=-25\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}C=-4.\text{\hspace{0.17em}}$ Because $\text{\hspace{0.17em}}AC>0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}A\ne C,$ the graph of this equation is an ellipse.

Identify the graph of each of the following nondegenerate conic sections.

1. $16{y}^{2}-{x}^{2}+x-4y-9=0$
2. $16{x}^{2}+4{y}^{2}+16x+49y-81=0$
1. hyperbola
2. ellipse

## Finding a new representation of the given equation after rotating through a given angle

Until now, we have looked at equations of conic sections without an $\text{\hspace{0.17em}}xy\text{\hspace{0.17em}}$ term, which aligns the graphs with the x - and y -axes. When we add an $\text{\hspace{0.17em}}xy\text{\hspace{0.17em}}$ term, we are rotating the conic about the origin. If the x - and y -axes are rotated through an angle, say $\text{\hspace{0.17em}}\theta ,$ then every point on the plane may be thought of as having two representations: $\text{\hspace{0.17em}}\left(x,y\right)\text{\hspace{0.17em}}$ on the Cartesian plane with the original x -axis and y -axis, and $\text{\hspace{0.17em}}\left({x}^{\prime },{y}^{\prime }\right)\text{\hspace{0.17em}}$ on the new plane defined by the new, rotated axes, called the x' -axis and y' -axis. See [link] .

We will find the relationships between $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ on the Cartesian plane with $\text{\hspace{0.17em}}{x}^{\prime }\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{y}^{\prime }\text{\hspace{0.17em}}$ on the new rotated plane. See [link] .

The original coordinate x - and y -axes have unit vectors $\text{\hspace{0.17em}}i\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}j\text{\hspace{0.17em}}.$ The rotated coordinate axes have unit vectors $\text{\hspace{0.17em}}{i}^{\prime }\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{j}^{\prime }.$ The angle $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ is known as the angle of rotation    . See [link] . We may write the new unit vectors in terms of the original ones.

Consider a vector $\text{\hspace{0.17em}}u\text{\hspace{0.17em}}$ in the new coordinate plane. It may be represented in terms of its coordinate axes.

Because $\text{\hspace{0.17em}}u={x}^{\prime }{i}^{\prime }+{y}^{\prime }{j}^{\prime },$ we have representations of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ in terms of the new coordinate system.

## Equations of rotation

If a point $\text{\hspace{0.17em}}\left(x,y\right)\text{\hspace{0.17em}}$ on the Cartesian plane is represented on a new coordinate plane where the axes of rotation are formed by rotating an angle $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ from the positive x -axis, then the coordinates of the point with respect to the new axes are $\text{\hspace{0.17em}}\left({x}^{\prime },{y}^{\prime }\right).\text{\hspace{0.17em}}$ We can use the following equations of rotation to define the relationship between $\text{\hspace{0.17em}}\left(x,y\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left({x}^{\prime },{y}^{\prime }\right):$

and

Given the equation of a conic, find a new representation after rotating through an angle.

1. Find $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ where and
2. Substitute the expression for $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ into in the given equation, then simplify.
3. Write the equations with $\text{\hspace{0.17em}}{x}^{\prime }\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{y}^{\prime }\text{\hspace{0.17em}}$ in standard form.

how do I set up the problem?
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
Abdullahi
hi mam
Mark
find the value of 2x=32
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
yes i wantt to review
Mark
use the y -intercept and slope to sketch the graph of the equation y=6x
how do we prove the quadratic formular
Darius
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
can you teacch how to solve that🙏
Mark
Solve for the first variable in one of the equations, then substitute the result into the other equation. Point For: (6111,4111,−411)(6111,4111,-411) Equation Form: x=6111,y=4111,z=−411x=6111,y=4111,z=-411
Brenna
(61/11,41/11,−4/11)
Brenna
x=61/11 y=41/11 z=−4/11 x=61/11 y=41/11 z=-4/11
Brenna
Need help solving this problem (2/7)^-2
x+2y-z=7
Sidiki
what is the coefficient of -4×
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
An investment account was opened with an initial deposit of \$9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation