<< Chapter < Page Chapter >> Page >

Show that the following two matrices are inverses of each other.

A = [ 1 4 −1 −3 ] , B = [ −3 −4 1 1 ]
A B = [ 1 4 −1 −3 ] [ −3 −4 1 1 ] = [ 1 ( −3 ) + 4 ( 1 ) 1 ( −4 ) + 4 ( 1 ) −1 ( −3 ) + −3 ( 1 ) −1 ( −4 ) + −3 ( 1 ) ] = [ 1 0 0 1 ] B A = [ −3 −4 1 1 ] [ 1 4 −1 −3 ] = [ −3 ( 1 ) + −4 ( −1 ) −3 ( 4 ) + −4 ( −3 ) 1 ( 1 ) + 1 ( −1 ) 1 ( 4 ) + 1 ( −3 ) ] = [ 1 0 0 1 ]
Got questions? Get instant answers now!

Finding the multiplicative inverse using matrix multiplication

We can now determine whether two matrices are inverses, but how would we find the inverse of a given matrix? Since we know that the product of a matrix and its inverse is the identity matrix, we can find the inverse of a matrix by setting up an equation using matrix multiplication .

Finding the multiplicative inverse using matrix multiplication

Use matrix multiplication to find the inverse of the given matrix.

A = [ 1 −2 2 −3 ]

For this method, we multiply A by a matrix containing unknown constants and set it equal to the identity.

[ 1 −2 2 −3 ]     [ a b c d ] = [ 1 0 0 1 ]

Find the product of the two matrices on the left side of the equal sign.

[ 1 −2 2 −3 ]     [ a b c d ] = [ 1 a −2 c 1 b −2 d 2 a −3 c 2 b −3 d ]

Next, set up a system of equations with the entry in row 1, column 1 of the new matrix equal to the first entry of the identity, 1. Set the entry in row 2, column 1 of the new matrix equal to the corresponding entry of the identity, which is 0.

1 a −2 c = 1      R 1 2 a −3 c = 0      R 2

Using row operations, multiply and add as follows: ( −2 ) R 1 + R 2 R 2 . Add the equations, and solve for c .

1 a 2 c = 1 0 + 1 c = 2 c = 2

Back-substitute to solve for a .

a −2 ( −2 ) = 1 a + 4 = 1 a = −3

Write another system of equations setting the entry in row 1, column 2 of the new matrix equal to the corresponding entry of the identity, 0. Set the entry in row 2, column 2 equal to the corresponding entry of the identity.

1 b −2 d = 0 R 1 2 b −3 d = 1 R 2

Using row operations, multiply and add as follows: ( −2 ) R 1 + R 2 = R 2 . Add the two equations and solve for d .

1 b −2 d = 0 0 + 1 d = 1 d = 1

Once more, back-substitute and solve for b .

b −2 ( 1 ) = 0 b −2 = 0 b = 2
A −1 = [ −3 2 −2 1 ]
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Finding the multiplicative inverse by augmenting with the identity

Another way to find the multiplicative inverse is by augmenting with the identity. When matrix A is transformed into I , the augmented matrix I transforms into A −1 .

For example, given

A = [ 2 1 5 3 ]

augment A with the identity

[ 2 1 5 3   |   1 0 0 1 ]

Perform row operations    with the goal of turning A into the identity.

  1. Switch row 1 and row 2.
    [ 5 3 2 1   |   0 1 1 0 ]
  2. Multiply row 2 by −2 and add to row 1.
    [ 1 1 2 1   |   −2 1 1 0 ]
  3. Multiply row 1 by −2 and add to row 2.
    [ 1 1 0 −1   |   −2 1 5 −2 ]
  4. Add row 2 to row 1.
    [ 1 0 0 −1   |   3 −1 5 −2 ]
  5. Multiply row 2 by −1.
    [ 1 0 0 1   |   3 −1 −5 2 ]

The matrix we have found is A −1 .

A −1 = [ 3 −1 −5 2 ]

Finding the multiplicative inverse of 2×2 matrices using a formula

When we need to find the multiplicative inverse of a 2 × 2 matrix, we can use a special formula instead of using matrix multiplication or augmenting with the identity.

If A is a 2 × 2 matrix, such as

A = [ a b c d ]

the multiplicative inverse of A is given by the formula

A −1 = 1 a d b c [ d b c a ]

where a d b c 0. If a d b c = 0 , then A has no inverse.

Using the formula to find the multiplicative inverse of matrix A

Use the formula to find the multiplicative inverse of

A = [ 1 −2 2 −3 ]

Using the formula, we have

A −1 = 1 ( 1 ) ( −3 ) ( −2 ) ( 2 ) [ −3 2 −2 1 ] = 1 −3 + 4 [ −3 2 −2 1 ] = [ −3 2 −2 1 ]
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

what is math number
Tric Reply
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
Need help solving this problem (2/7)^-2
Simone Reply
x+2y-z=7
Sidiki
what is the coefficient of -4×
Mehri Reply
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
12, 17, 22.... 25th term
Alexandra Reply
12, 17, 22.... 25th term
Akash
College algebra is really hard?
Shirleen Reply
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
Carole
I'm 13 and I understand it great
AJ
I am 1 year old but I can do it! 1+1=2 proof very hard for me though.
Atone
hi
Adu
Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily.
Vedant
find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
If f(x) = x-2 then, f(3) when 5f(x+1) 5((3-2)+1) 5(1+1) 5(2) 10
Augustine
how do they get the third part x = (32)5/4
kinnecy Reply
make 5/4 into a mixed number, make that a decimal, and then multiply 32 by the decimal 5/4 turns out to be
AJ
how
Sheref
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
hi
Ayuba
Hello
opoku
hi
Ali
greetings from Iran
Ali
salut. from Algeria
Bach
hi
Nharnhar
Practice Key Terms 2

Get the best College algebra course in your pocket!





Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask