<< Chapter < Page Chapter >> Page >

Using synthetic division to divide a second-degree polynomial

Use synthetic division to divide 5 x 2 3 x 36 by x 3.

Begin by setting up the synthetic division. Write k and the coefficients.

A collapsed version of the previous synthetic division.

Bring down the lead coefficient. Multiply the lead coefficient by k .

The set-up of the synthetic division for the polynomial 5x^2-3x-36 by x-3, which renders {5, -3, -36} by 3.

Continue by adding the numbers in the second column. Multiply the resulting number by k . Write the result in the next column. Then add the numbers in the third column.

Multiplied by the lead coefficient, 5, in the second column, and the lead coefficient is brought down to the second row.

The result is 5 x + 12. The remainder is 0. So x 3 is a factor of the original polynomial.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using synthetic division to divide a third-degree polynomial

Use synthetic division to divide 4 x 3 + 10 x 2 6 x 20 by x + 2.

The binomial divisor is x + 2 so k = −2. Add each column, multiply the result by –2, and repeat until the last column is reached.

Synthetic division of 4x^3+10x^2-6x-20 divided by x+2.

The result is 4 x 2 + 2 x 10. The remainder is 0. Thus, x + 2 is a factor of 4 x 3 + 10 x 2 6 x 20.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using synthetic division to divide a fourth-degree polynomial

Use synthetic division to divide 9 x 4 + 10 x 3 + 7 x 2 6 by x 1.

Notice there is no x -term. We will use a zero as the coefficient for that term.

..

The result is 9 x 3 + x 2 + 8 x + 8 + 2 x 1 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use synthetic division to divide 3 x 4 + 18 x 3 3 x + 40 by x + 7.

3 x 3 3 x 2 + 21 x 150 + 1 , 090 x + 7

Got questions? Get instant answers now!

Using polynomial division to solve application problems

Polynomial division can be used to solve a variety of application problems involving expressions for area and volume. We looked at an application at the beginning of this section. Now we will solve that problem in the following example.

Using polynomial division in an application problem

The volume of a rectangular solid is given by the polynomial 3 x 4 3 x 3 33 x 2 + 54 x . The length of the solid is given by 3 x and the width is given by x 2. Find the height, t , of the solid.

There are a few ways to approach this problem. We need to divide the expression for the volume of the solid by the expressions for the length and width. Let us create a sketch as in [link] .

Graph of f(x)=4x^3+10x^2-6x-20 with a close up on x+2.

We can now write an equation by substituting the known values into the formula for the volume of a rectangular solid.

V = l w h 3 x 4 3 x 3 33 x 2 + 54 x = 3 x ( x 2 ) h

To solve for h , first divide both sides by 3 x .

3 x ( x 2 ) h 3 x = 3 x 4 3 x 3 33 x 2 + 54 x 3 x ( x 2 ) h = x 3 x 2 11 x + 18

Now solve for h using synthetic division.

h = x 3 x 2 11 x + 18 x 2

The quotient is x 2 + x 9 and the remainder is 0. The height of the solid is x 2 + x 9.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

The area of a rectangle is given by 3 x 3 + 14 x 2 23 x + 6. The width of the rectangle is given by x + 6. Find an expression for the length of the rectangle.

3 x 2 4 x + 1

Got questions? Get instant answers now!

Key equations

Division Algorithm f ( x ) = d ( x ) q ( x ) + r ( x )  where  q ( x ) 0

Key concepts

  • Polynomial long division can be used to divide a polynomial by any polynomial with equal or lower degree. See [link] and [link] .
  • The Division Algorithm tells us that a polynomial dividend can be written as the product of the divisor and the quotient added to the remainder.
  • Synthetic division is a shortcut that can be used to divide a polynomial by a binomial in the form x k . See [link] , [link] , and [link] .
  • Polynomial division can be used to solve application problems, including area and volume. See [link] .

Questions & Answers

answer and questions in exercise 11.2 sums
Yp Reply
what is a algebra
Jallah Reply
what is the identity of 1-cos²5x equal to?
liyemaikhaya Reply
__john __05
Kishu
Hi
Abdel
hi
Ye
hi
Nokwanda
C'est comment
Abdel
Hi
Amanda
hello
SORIE
Hiiii
Chinni
hello
Ranjay
hi
ANSHU
hiiii
Chinni
h r u friends
Chinni
yes
Hassan
so is their any Genius in mathematics here let chat guys and get to know each other's
SORIE
I speak French
Abdel
okay no problem since we gather here and get to know each other
SORIE
hi im stupid at math and just wanna join here
Yaona
lol nahhh none of us here are stupid it's just that we have Fast, Medium, and slow learner bro but we all going to work things out together
SORIE
it's 12
what is the function of sine with respect of cosine , graphically
Karl Reply
tangent bruh
Steve
cosx.cos2x.cos4x.cos8x
Aashish Reply
sinx sin2x is linearly dependent
cr Reply
what is a reciprocal
Ajibola Reply
The reciprocal of a number is 1 divided by a number. eg the reciprocal of 10 is 1/10 which is 0.1
Shemmy
 Reciprocal is a pair of numbers that, when multiplied together, equal to 1. Example; the reciprocal of 3 is ⅓, because 3 multiplied by ⅓ is equal to 1
Jeza
each term in a sequence below is five times the previous term what is the eighth term in the sequence
Funmilola Reply
I don't understand how radicals works pls
Kenny Reply
How look for the general solution of a trig function
collins Reply
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
Saurabh Reply
sinx sin2x is linearly dependent
cr
root under 3-root under 2 by 5 y square
Himanshu Reply
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
amani Reply
cosA\1+sinA=secA-tanA
Aasik Reply
Wrong question
Saad
why two x + seven is equal to nineteen.
Kingsley Reply
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask