# 3.2 Domain and range  (Page 2/11)

 Page 2 / 11

Before we begin, let us review the conventions of interval notation:

• The smallest number from the interval is written first.
• The largest number in the interval is written second, following a comma.
• Parentheses, ( or ), are used to signify that an endpoint value is not included, called exclusive.
• Brackets, [ or ], are used to indicate that an endpoint value is included, called inclusive.

See [link] for a summary of interval notation.

## Finding the domain of a function as a set of ordered pairs

Find the domain    of the following function: .

First identify the input values. The input value is the first coordinate in an ordered pair    . There are no restrictions, as the ordered pairs are simply listed. The domain is the set of the first coordinates of the ordered pairs.

$\left\{2,3,4,5,6\right\}$

Find the domain of the function:

$\left\{\left(-5,4\right),\left(0,0\right),\left(5,-4\right),\left(10,-8\right),\left(15,-12\right)\right\}$

$\left\{-5,\text{\hspace{0.17em}}0,\text{\hspace{0.17em}}5,\text{\hspace{0.17em}}10,\text{\hspace{0.17em}}15\right\}$

Given a function written in equation form, find the domain.

1. Identify the input values.
2. Identify any restrictions on the input and exclude those values from the domain.
3. Write the domain in interval form, if possible.

## Finding the domain of a function

Find the domain of the function $\text{\hspace{0.17em}}f\left(x\right)={x}^{2}-1.$

The input value, shown by the variable $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ in the equation, is squared and then the result is lowered by one. Any real number may be squared and then be lowered by one, so there are no restrictions on the domain of this function. The domain is the set of real numbers.

In interval form, the domain of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ is $\text{\hspace{0.17em}}\left(-\infty ,\infty \right).$

Find the domain of the function: $\text{\hspace{0.17em}}f\left(x\right)=5-x+{x}^{3}.$

$\left(-\infty ,\infty \right)$

Given a function written in an equation form that includes a fraction, find the domain.

1. Identify the input values.
2. Identify any restrictions on the input. If there is a denominator in the function’s formula, set the denominator equal to zero and solve for $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ . If the function’s formula contains an even root, set the radicand greater than or equal to 0, and then solve.
3. Write the domain in interval form, making sure to exclude any restricted values from the domain.

## Finding the domain of a function involving a denominator

Find the domain    of the function $\text{\hspace{0.17em}}f\left(x\right)=\frac{x+1}{2-x}.$

When there is a denominator, we want to include only values of the input that do not force the denominator to be zero. So, we will set the denominator equal to 0 and solve for $\text{\hspace{0.17em}}x.$

$\begin{array}{ccc}\hfill 2-x& =& 0\hfill \\ \hfill -x& =& -2\hfill \\ \hfill x& =& 2\hfill \end{array}$

Now, we will exclude 2 from the domain. The answers are all real numbers where $\text{\hspace{0.17em}}x<2\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}x>2\text{\hspace{0.17em}}$ as shown in [link] . We can use a symbol known as the union, $\text{\hspace{0.17em}}\cup ,$ to combine the two sets. In interval notation, we write the solution: $\left(\mathrm{-\infty },2\right)\cup \left(2,\infty \right).$

Find the domain of the function: $\text{\hspace{0.17em}}f\left(x\right)=\frac{1+4x}{2x-1}.$

$\left(-\infty ,\frac{1}{2}\right)\cup \left(\frac{1}{2},\infty \right)$

Given a function written in equation form including an even root, find the domain.

1. Identify the input values.
2. Since there is an even root, exclude any real numbers that result in a negative number in the radicand. Set the radicand greater than or equal to zero and solve for $\text{\hspace{0.17em}}x.$
3. The solution(s) are the domain of the function. If possible, write the answer in interval form.

## Finding the domain of a function with an even root

Find the domain    of the function $\text{\hspace{0.17em}}f\left(x\right)=\sqrt{7-x}.$

When there is an even root in the formula, we exclude any real numbers that result in a negative number in the radicand.

Set the radicand greater than or equal to zero and solve for $\text{\hspace{0.17em}}x.$

$\begin{array}{ccc}\hfill 7-x& \ge & 0\hfill \\ \hfill -x& \ge & -7\hfill \\ \hfill x& \le & 7\hfill \end{array}$

Now, we will exclude any number greater than 7 from the domain. The answers are all real numbers less than or equal to $\text{\hspace{0.17em}}7,\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}\left(-\infty ,7\right].$

find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
yah
immy