# 0.4 Bases, orthogonal bases, biorthogonal bases, frames, tight

 Page 1 / 5
Development of ideas of vector expansion

Most people with technical backgrounds are familiar with the ideas of expansion vectors or basis vectors and of orthogonality; however, therelated concepts of biorthogonality or of frames and tight frames are less familiar but also important. In the study of wavelet systems, we find thatframes and tight frames are needed and should be understood, at least at a superficial level. One can find details in [link] , [link] , [link] , [link] , [link] . Another perhaps unfamiliar concept is that of an unconditional basis usedby Donoho, Daubechies, and others [link] , [link] , [link] to explain why wavelets are good for signal compression, detection, and denoising [link] , [link] . In this chapter, we will very briefly define and discuss these ideas. At this point, you may want to skip thesesections and perhaps refer to them later when they are specifically needed.

## Bases, orthogonal bases, and biorthogonal bases

A set of vectors or functions ${f}_{k}\left(t\right)$ spans a vector space $F$ (or $F$ is the Span of the set) if any element of that space can be expressed as a linear combination of members of thatset, meaning: Given the finite or infinite set of functions ${f}_{k}\left(t\right)$ , we define ${\mathrm{Span}}_{k}\left\{{f}_{k}\right\}=F$ as the vector space with all elements of the space of the form

$g\left(t\right)=\sum _{k}\phantom{\rule{0.277778em}{0ex}}{a}_{k}\phantom{\rule{0.277778em}{0ex}}{f}_{k}\left(t\right)$

with $k\in \mathbf{Z}$ and $t,a\in \mathbf{R}$ . An inner product is usually defined for this space and is denoted $⟨f\left(t\right),g\left(t\right)⟩$ . A norm is defined and is denoted by $\parallel f\parallel =\sqrt{⟨f,f⟩}$ .

We say that the set ${f}_{k}\left(t\right)$ is a basis set or a basis for a given space $F$ if the set of $\left\{{a}_{k}\right\}$ in [link] are unique for any particular $g\left(t\right)\in F$ . The set is called an orthogonal basis if $⟨{f}_{k}\left(t\right),{f}_{\ell }\left(t\right)⟩=0$ for all $k\ne \ell$ . If we are in three dimensional Euclidean space, orthogonal basis vectors are coordinate vectors that are at right (90 o ) angles to each other. We say the set is an orthonormal basis if $⟨{f}_{k}\left(t\right),{f}_{\ell }\left(t\right)⟩=\delta \left(k-\ell \right)$ i.e. if, in addition to being orthogonal, the basis vectors are normalized to unity norm: $\parallel {f}_{k}\left(t\right)\parallel =1$ for all $k$ .

From these definitions it is clear that if we have an orthonormal basis, we can express any element in the vector space, $g\left(t\right)\in F$ , written as [link] by

$g\left(t\right)=\sum _{k}⟨g\left(t\right),\phantom{\rule{0.166667em}{0ex}}{f}_{k}\left(t\right)⟩\phantom{\rule{0.277778em}{0ex}}{f}_{k}\left(t\right)$

since by taking the inner product of ${f}_{k}\left(t\right)$ with both sides of [link] , we get

${a}_{k}=⟨g\left(t\right),\phantom{\rule{0.166667em}{0ex}}{f}_{k}\left(t\right)⟩$

where this inner product of the signal $g\left(t\right)$ with the basis vector ${f}_{k}\left(t\right)$ “picks out" the corresponding coefficient ${a}_{k}$ . This expansion formulation or representation is extremely valuable. It expresses [link] as an identity operator in the sense that the inner product operates on $g\left(t\right)$ to produce a set of coefficients that, when used to linearly combine the basis vectors, gives back the original signal $g\left(t\right)$ . It is the foundation of Parseval's theorem which says the norm or energycan be partitioned in terms of the expansion coefficients ${a}_{k}$ . It is why the interpretation, storage, transmission, approximation, compression, andmanipulation of the coefficients can be very useful. Indeed, [link] is the form of all Fourier type methods.

Although the advantages of an orthonormal basis are clear, there are cases where the basis system dictated by the problem is not and cannot (orshould not) be made orthogonal. For these cases, one can still have the expression of [link] and one similar to [link] by using a dual basis set ${\stackrel{˜}{f}}_{k}\left(t\right)$ whose elements are not orthogonal to each other, but to the corresponding element of the expansion set

who was the first nanotechnologist
k
Veysel
technologist's thinker father is Richard Feynman but the literature first user scientist Nario Tagunichi.
Veysel
Norio Taniguchi
puvananathan
Interesting
Andr
I need help
Richard
anyone have book of Abdel Salam Hamdy Makhlouf book in pdf Fundamentals of Nanoparticles: Classifications, Synthesis
what happen with The nano material on The deep space.?
It could change the whole space science.
puvananathan
the characteristics of nano materials can be studied by solving which equation?
sibaram
synthesis of nano materials by chemical reaction taking place in aqueous solvents under high temperature and pressure is call?
sibaram
hydrothermal synthesis
ISHFAQ
how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
STM - Scanning Tunneling Microscope.
puvananathan
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!