<< Chapter < Page Chapter >> Page >

Specific gravity

Specific gravity is the ratio of the density of an object to a fluid (usually water).

A hydrometer has lead at the bottom and air on top. It floats on the fluid and specific gravity can be directly read from it.
This hydrometer is floating in a fluid of specific gravity 0.87. The glass hydrometer is filled with air and weighted with lead at the bottom. It floats highest in the densest fluids and has been calibrated and labeled so that specific gravity can be read from it directly.

Calculating average density: floating woman

Suppose a 60.0-kg woman floats in freshwater with 97.0% of her volume submerged when her lungs are full of air. What is her average density?

Strategy

We can find the woman’s density by solving the equation

fraction submerged = ρ ¯ obj ρ fl size 12{"fraction"`"submerged"= { { { bar {ρ}} rSub { size 8{"obj"} } } over {ρ rSub { size 8{"fl"} } } } } {}

for the density of the object. This yields

ρ ¯ obj = ρ ¯ person = ( fraction submerged ) ρ fl . size 12{ { bar {ρ}} rSub { size 8{"obj"} } = { bar {ρ}} rSub { size 8{"person"} } = \( "fraction submerged" \) cdot ρ rSub { size 8{"fl"} } } {}

We know both the fraction submerged and the density of water, and so we can calculate the woman’s density.

Solution

Entering the known values into the expression for her density, we obtain

ρ ¯ person = 0 . 970 10 3 kg m 3 = 970 kg m 3 . size 12{ { bar {ρ}} rSub { size 8{"person"} } =0 "." "970" cdot left ("10" rSup { size 8{3} } { {"kg"} over {m rSup { size 8{3} } } } right )="970" { {"kg"} over {m rSup { size 8{3} } } } } {}

Discussion

Her density is less than the fluid density. We expect this because she floats. Body density is one indicator of a person’s percent body fat, of interest in medical diagnostics and athletic training. (See [link] .)

Got questions? Get instant answers now!
The weight of a person can be determined while submerged in a fat tank. Based on this, the percentage of body weight can be calculated.
Subject in a “fat tank,” where he is weighed while completely submerged as part of a body density determination. The subject must completely empty his lungs and hold a metal weight in order to sink. Corrections are made for the residual air in his lungs (measured separately) and the metal weight. His corrected submerged weight, his weight in air, and pinch tests of strategic fatty areas are used to calculate his percent body fat.

There are many obvious examples of lower-density objects or substances floating in higher-density fluids—oil on water, a hot-air balloon, a bit of cork in wine, an iceberg, and hot wax in a “lava lamp,” to name a few. Less obvious examples include lava rising in a volcano and mountain ranges floating on the higher-density crust and mantle beneath them. Even seemingly solid Earth has fluid characteristics.

More density measurements

One of the most common techniques for determining density is shown in [link] .

The density of a coin can be determined by measuring its weight in air and its weight submerged in a fluid of known density.
(a) A coin is weighed in air. (b) The apparent weight of the coin is determined while it is completely submerged in a fluid of known density. These two measurements are used to calculate the density of the coin.

An object, here a coin, is weighed in air and then weighed again while submerged in a liquid. The density of the coin, an indication of its authenticity, can be calculated if the fluid density is known. This same technique can also be used to determine the density of the fluid if the density of the coin is known. All of these calculations are based on Archimedes’ principle.

Archimedes’ principle states that the buoyant force on the object equals the weight of the fluid displaced. This, in turn, means that the object appears to weigh less when submerged; we call this measurement the object’s apparent weight . The object suffers an apparent weight loss equal to the weight of the fluid displaced. Alternatively, on balances that measure mass, the object suffers an apparent mass loss equal to the mass of fluid displaced. That is

Questions & Answers

Explain why a building made of bricks has smaller entropy than the same bricks in a disorganized pile. Do this by considering the number of ways that each could be formed (the number of microstates in each macrostate).
Thenaj Reply
Omo physics hard ooo 😂😭😭😭
Daniel Reply
yeah but just need patient
Musbahu
The closeness of a measurement to the accepted value for a specific physical quantity is known as what ?
Successful Reply
what's the procedure for solving exercise 9.
Woodrow Reply
If you dive into water, you reach greater depths than if you do a belly flop. Explain this difference in depth using the concept of conservation of energy. Explain this difference in depth 
Demeay Reply
A mass of 10kg move with a volocity of 4mß.find it's kinetic energy
Samuel Reply
80m/s²
Angel
KE=1/2mv²
Angel
m= 10
Angel
v=4
Angel
Happy to help
Angel
hi
Dike
What is the unit of force in F.P.S system
Sartaj Reply
f=ma, f=m/s2
MD
lb-ft/s^2
Mary
what is an F.P.S system
Angel
please someone should send his or her number o. this platform
Pelumi
what is the unit for force
Paul Reply
newtons
Angel
hello
Pelumi
Newton or kg. m/sec^2
Hiba
v=sin(att/s) Prove please as dimension consistent or not
Hashim Reply
v=sin(att/s) Prove please as dimension consistent or not
Hashim
what is physics
Dayyabu Reply
what is physic and what are its branches
Gordon Reply
= Kinematics = Quantum Physics = Dynamics = Statistics = Linear algebra = Calculus (Pre - Calculus, Calculus I Calculus II Calculus III Calculus IV) =Astrophysics And many more...... .....
puvananathan
what is andromeda
Akalador Reply
what is the milky way
Akalador
What's the difference between deceleration and negative acceleration?
Lee Reply
MNEMONICS FOR THE BRANCHES OF PHYSICS
Busola Reply
are you asking for the mnemonics or you want to share it with us.?!?
paul
i ask about it
umar
While operating, a TV monitor is placed on its side during maintenance. The image on the monitor changes color and blurs slightly. Discuss the possible relation of these effects to the Earth’s magnetic field.
Dedachew Reply
WhileGot questions? Get instant answers now! operating, a TV monitor is placed on its side during maintenance. The image on the monitor changes color and blurs slightly. Discuss the possible relation of these effects to the Earth’s magnetic field.
Dedachew
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask