# 1.2 Shm equation  (Page 2/2)

 Page 2 / 2

Angular acceleration, $\alpha =-\frac{mgl}{I}\theta$ ------ for rotational SHM of pendulum

where “m” and “I” are mass and moment of inertia of the oscillating objects in two systems.

In order to understand the nature of cause, we focus on the block-spring system. When the block is to the right of origin, “x” is positive and restoring spring force is negative. This means that restoring force (resulting from elongation of the spring) is directed left towards the neutral position (center of oscillation). This force accelerates the block towards the center. As a result, the block picks up velocity till it reaches the center.

The plot, here, depicts nature of force about the center of oscillation bounded between maximum displacements on either side.

As the block moves past the center, “x” is negative and force is positive. This means that restoring force (resulting from compression of the spring) is directed right towards the center. The acceleration is positive, but opposite to direction of velocity. As such restoring force decelerates the block.

In the nutshell, after the block is released at one extreme, it moves, first, with acceleration up to the center and then moves beyond center towards left with deceleration till velocity becomes zero at the opposite extreme. It is clear that block has maximum velocity at the center and least at the extreme positions (zero).

From the discussion, the characterizing aspects of the restoring force responsible for SHM are :

• The restoring force is always directed towards the center of oscillation.
• The restoring force changes direction across the center.
• The restoring force first accelerates the object till it reaches the center and then decelerates the object till it reaches the other extreme.
• The process of “acceleration” and “deceleration” keeps alternating in each half of the motion.

## Differential form of shm equation

We observed that acceleration of the object in SHM is proportional to negative of displacement. Here, we shall formulate the general equation for SHM in linear motion with the understanding that same can be extended to SHM along curved path. In that case, we only need to replace linear quantities with corresponding angular quantities.

$a=-{\omega }^{2}x$

where “ ${\omega }^{2}$ ” is a constant. The constant “ω” turns out to be angular frequency of SHM. This equation is the basic equation for SHM. For block-spring system, it can be seen that :

$\omega =\sqrt{\left(\frac{k}{m}\right)}$

where “k” is the spring constant and “m” is the mass of the oscillating block. We can, now, write acceleration as differential,

$\frac{{d}^{2}x}{d{t}^{2}}=-{\omega }^{2}x$

$⇒\frac{{d}^{2}x}{d{t}^{2}}+{\omega }^{2}x=0$

This is the SHM equation in differential form for linear oscillation. A corresponding equation of motion in the context of angular SHM is :

$⇒\frac{{d}^{2}\theta }{d{t}^{2}}+{\omega }^{2}\theta =0$

where "θ" is the angular displacement.

## Solution of shm differential equation

In order to solve the differential equation, we consider position of the oscillating object at an initial displacement ${x}_{0}$ at t =0. We need to emphasize that “ ${x}_{0}$ ” is initial position – not the extreme position, which is equal to amplitude “A”. Let

$t=0,\phantom{\rule{1em}{0ex}}x={x}_{0,}\phantom{\rule{1em}{0ex}}v={v}_{0}$

We shall solve this equation in two parts. We shall first solve equation of motion for the velocity as acceleration can be written as differentiation of velocity w.r.t to time. Once, we have the expression for velocity, we can solve velocity equation to obtain a relation for displacement as its derivative w.r.t time is equal to velocity.

## Velocity

We write SHM equation as differential of velocity :

$a=\frac{dv}{dt}==-{\omega }^{2}x$

$⇒\frac{dv}{dx}X\frac{dx}{dt}=-{\omega }^{2}x$

$⇒v\frac{dv}{dx}=-{\omega }^{2}x$

Arranging terms with same variable on either side, we have :

$⇒vdv=-{\omega }^{2}xdx$

Integrating on either side between interval, while keeping constant out of the integral sign :

$⇒\underset{{v}_{0}}{\overset{v}{\int }}vdv=-{\omega }^{2}\underset{{x}_{0}}{\overset{x}{\int }}xdx$

$⇒\left[\frac{{v}^{2}}{2}\underset{{v}_{0}}{\overset{v}{\right]}}=-{\omega }^{2}\left[\frac{{x}^{2}}{2}\underset{{x}_{0}}{\overset{x}{\right]}}$

$⇒\left({v}^{2}-{v}_{0}^{2}\right)=-{\omega }^{2}\left({x}^{2}-{x}_{0}^{2}\right)$

$⇒v=\sqrt{\left\{\left({v}_{0}^{2}+{\omega }^{2}{x}_{0}^{2}\right)-{\omega }^{2}{x}^{2}\right\}}$

$⇒v=\omega \sqrt{\left\{\left(\frac{{v}_{0}^{2}}{{\omega }^{2}}+{x}_{0}^{2}\right)-{x}^{2}\right\}}$

We put $\left(\frac{{v}_{0}^{2}}{{\omega }^{2}}+{x}_{0}^{2}\right)={A}^{2}$ . We shall see that “A” turns out to be the amplitude of SHM.

$⇒v=\omega \sqrt{\left({A}^{2}-{x}^{2}\right)}$

This is the equation of velocity. When x = A or -A,

$⇒v=\omega \sqrt{\left({A}^{2}-{A}^{2}\right)}=0$

when x = 0,

$⇒v\mathrm{max}=\omega \sqrt{\left({A}^{2}-{0}^{2}\right)}=\omega A$

## Displacement

We write velocity as differential of displacement :

$v=\frac{dx}{dt}=\omega \sqrt{\left({A}^{2}-{x}^{2}\right)}$

Arranging terms with same variable on either side, we have :

$⇒\frac{dx}{\sqrt{\left({A}^{2}-{x}^{2}\right)}}=\omega dt$

Integrating on either side between interval, while keeping constant out of the integral sign :

$⇒\underset{{x}_{0}}{\overset{x}{\int }}\frac{dx}{\sqrt{\left({A}^{2}-{x}^{2}\right)}}=\omega \underset{0}{\overset{t}{\int }}dt$

$⇒\left[{\mathrm{sin}}^{-1}\frac{x}{A}\underset{{x}_{0}}{\overset{x}{\right]}}=\omega t$

$⇒{\mathrm{sin}}^{-1}\frac{x}{A}-{\mathrm{sin}}^{-1}\frac{{x}_{0}}{A}=\omega t$

Let ${\mathrm{sin}}^{-1}\frac{{x}_{0}}{A}=\phi$ . We shall see that “φ” turns out to be the phase constant of SHM.

$⇒{\mathrm{sin}}^{-1}\frac{x}{A}=\omega t+\phi$

$⇒x=A\mathrm{sin}\left(\omega t+\phi \right)$

This is one of solutions of the differential equation. We can check this by differentiating this equation twice with respect to time to yield equation of motion :

$\frac{dx}{dt}=A\omega \mathrm{cos}\left(\omega t+\phi \right)$

$\frac{{d}^{2}x}{d{t}^{2}}=-A{\omega }^{2}\mathrm{sin}\left(\omega t+\phi \right)=-{\omega }^{2}x$

$⇒\frac{{d}^{2}x}{d{t}^{2}}+{\omega }^{2}x=0$

Similarly, it is found that equation of displacement in cosine form, $x=A\mathrm{cos}\left(\omega t+\phi \right)$ , also satisfies the equation of motion. As such, we can use either of two forms to represent displacement in SHM. Further, we can write general solution of the equation as :

$x=A\mathrm{sin}\omega t+B\mathrm{cos}\omega t$

This equation can be reduced to single sine or cosine function with appropriate substitution.

## Example

Problem 1: Find the time taken by a particle executing SHM in going from mean position to half the amplitude. The time period of oscillation is 2 s.

Solution : Employing expression for displacement, we have :

$x=A\mathrm{sin}\omega t$

We have deliberately used sine function to represent displacement as we are required to determine time for displacement from mean position to a certain point. We could ofcourse stick with cosine function, but then we would need to add a phase constant “π/2” or “-π/2”. The two approach yields the same expression of displacement as above.

Now, according to question,

$⇒\frac{A}{2}=A\mathrm{sin}\omega t$

$⇒\mathrm{sin}\omega t=\frac{1}{2}=\mathrm{sin}\frac{\pi }{6}$

$⇒\omega t=\frac{\pi }{6}$

$⇒t=\frac{\pi }{6\omega }=\frac{\pi T}{6X2\pi }=\frac{T}{12}=\frac{2}{12}=\frac{1}{6}\phantom{\rule{1em}{0ex}}s$

#### Questions & Answers

who was the first nanotechnologist
k
Veysel
technologist's thinker father is Richard Feynman but the literature first user scientist Nario Tagunichi.
Veysel
Norio Taniguchi
puvananathan
Interesting
Andr
I need help
Richard
anyone have book of Abdel Salam Hamdy Makhlouf book in pdf Fundamentals of Nanoparticles: Classifications, Synthesis
what happen with The nano material on The deep space.?
It could change the whole space science.
puvananathan
the characteristics of nano materials can be studied by solving which equation?
sibaram
synthesis of nano materials by chemical reaction taking place in aqueous solvents under high temperature and pressure is call?
sibaram
hydrothermal synthesis
ISHFAQ
how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
STM - Scanning Tunneling Microscope.
puvananathan
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!